Search any question & find its solution
Question:
Answered & Verified by Expert
$12 \mathrm{~cm}^3$ of $\mathrm{SO}_2(g)$ diffused through a porous membrane in 1 minute. Under similar conditions $120 \mathrm{~cm}^3$ of another gas diffused in 5 minutes. The molar mass of the gas in $\mathrm{g} \mathrm{mol}^{-1}$ is
Options:
Solution:
2800 Upvotes
Verified Answer
The correct answer is:
16
According to law of diffusion rate $(r) \alpha \frac{1}{\sqrt{M}}$ (molar mass) and $r$ (rate) $\alpha \frac{\text { volume }(V)}{\text { time }(t)}$
i.e. $\quad \frac{r_{\left(\mathrm{SO}_2\right)}}{r_{(z)}}=\frac{(V / t)_{\left(\mathrm{SO}_2\right)}}{(V / t)_{(z)}}=\frac{[\mathrm{l} / \sqrt{M}]_{\left(\mathrm{SO}_2\right)}}{(\mathrm{l} / \sqrt{M})_{C_z}}$ or, $\quad \frac{V_{\left(\mathrm{SO}_2\right)} \times t_{(z)}}{V_{(z)} \times t_{\left(\mathrm{SO}_2\right)}}=\sqrt{\frac{M_{(z)}}{M_{\left(\mathrm{SO}_2\right)}}}$
Given,
$$
\begin{aligned}
V_{\left(\mathrm{SO}_2\right)} & =12 \mathrm{~cm}^3 \\
t_{\left(\mathrm{SO}_2\right)} & =1 \text { minute }=1 \times 60=60 \mathrm{sec} \\
V_{(z)} & =120 \mathrm{~cm}^3 \\
t_{(z)} & =5 \text { minutes }=5 \times 60=300 \mathrm{sec}
\end{aligned}
$$
and molar mass $(M)$ of $\mathrm{SO}_2=32+(2 \times 16)=64$
Thus, $\frac{12 \times 300}{120 \times 60}=\sqrt{\frac{M_z}{64}}$ or, $\frac{1}{4}=\frac{M_z}{4}$
$\therefore \quad M_z=\frac{64}{4}=16$
Hence, molar mass of given gas is $=16 \mathrm{~g} \mathrm{~mol}^{-1}$
i.e. $\quad \frac{r_{\left(\mathrm{SO}_2\right)}}{r_{(z)}}=\frac{(V / t)_{\left(\mathrm{SO}_2\right)}}{(V / t)_{(z)}}=\frac{[\mathrm{l} / \sqrt{M}]_{\left(\mathrm{SO}_2\right)}}{(\mathrm{l} / \sqrt{M})_{C_z}}$ or, $\quad \frac{V_{\left(\mathrm{SO}_2\right)} \times t_{(z)}}{V_{(z)} \times t_{\left(\mathrm{SO}_2\right)}}=\sqrt{\frac{M_{(z)}}{M_{\left(\mathrm{SO}_2\right)}}}$
Given,
$$
\begin{aligned}
V_{\left(\mathrm{SO}_2\right)} & =12 \mathrm{~cm}^3 \\
t_{\left(\mathrm{SO}_2\right)} & =1 \text { minute }=1 \times 60=60 \mathrm{sec} \\
V_{(z)} & =120 \mathrm{~cm}^3 \\
t_{(z)} & =5 \text { minutes }=5 \times 60=300 \mathrm{sec}
\end{aligned}
$$
and molar mass $(M)$ of $\mathrm{SO}_2=32+(2 \times 16)=64$
Thus, $\frac{12 \times 300}{120 \times 60}=\sqrt{\frac{M_z}{64}}$ or, $\frac{1}{4}=\frac{M_z}{4}$
$\therefore \quad M_z=\frac{64}{4}=16$
Hence, molar mass of given gas is $=16 \mathrm{~g} \mathrm{~mol}^{-1}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.