Search any question & find its solution
Question:
Answered & Verified by Expert
$1.2 \mathrm{~mL}$ of acetic acid having density $1.06 \mathrm{~g} \mathrm{~cm}^{-3}$ is dissolved in 1 litre of water. The depression in freezing point observed for this concentration of acid was $0.041^{\circ} \mathrm{C}$. The van't Hoff factor of the acid is $\left(K_f\right.$ of water $\left.=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}\right)$
Options:
Solution:
1251 Upvotes
Verified Answer
The correct answer is:
1.04
From depression in freezing point,
$$
\begin{aligned}
& \text { Molality }(m)=\frac{\text { Moles of solute }}{\text { Mass of solvent }(\text { in } \mathrm{g})} \times 1000 \\
& \text { Mass }=\text { density } \times \text { volume }=1.2 \times 1.06=1.272 \mathrm{~g} \\
& \therefore \text { Moles of solute }=\frac{1.272}{60} \\
& \qquad\left(\because \text { Moles }=\frac{\text { Mass }}{\text { Molecular mass }}\right) \\
& 0.041=\frac{i \times 1.86 \times 1.272>\times 1000}{60 \times 1000}=\frac{60 \times 0.041}{1.86 \times 1.27} \\
& \quad i=1.04
\end{aligned}
$$
Thus, option (b) is correct.
$$
\begin{aligned}
& \text { Molality }(m)=\frac{\text { Moles of solute }}{\text { Mass of solvent }(\text { in } \mathrm{g})} \times 1000 \\
& \text { Mass }=\text { density } \times \text { volume }=1.2 \times 1.06=1.272 \mathrm{~g} \\
& \therefore \text { Moles of solute }=\frac{1.272}{60} \\
& \qquad\left(\because \text { Moles }=\frac{\text { Mass }}{\text { Molecular mass }}\right) \\
& 0.041=\frac{i \times 1.86 \times 1.272>\times 1000}{60 \times 1000}=\frac{60 \times 0.041}{1.86 \times 1.27} \\
& \quad i=1.04
\end{aligned}
$$
Thus, option (b) is correct.
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.