Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int \frac{1}{16-7 \sin ^2 x} d x=$
MathematicsIndefinite IntegrationTS EAMCETTS EAMCET 2023 (13 May Shift 1)
Options:
  • A $\frac{1}{12} \operatorname{Tan}^{-1}\left(\frac{3 \tan x}{4}\right)+c$
  • B $\frac{1}{3} \operatorname{Sin}^{-1}\left(\frac{3 \sin x}{4}\right)+c$
  • C $\frac{1}{12} \log \left(\frac{4-\sqrt{7} \sin x}{4+\sqrt{7} \sin x}\right)+c$
  • D $\frac{1}{12} \log \left(\frac{4+\sqrt{7} \sin x}{4-\sqrt{7} \sin x}\right)+c$
Solution:
2327 Upvotes Verified Answer
The correct answer is: $\frac{1}{12} \operatorname{Tan}^{-1}\left(\frac{3 \tan x}{4}\right)+c$
$$
\begin{aligned}
& \int \frac{d x}{16-7 \sin ^2 x}=\int \frac{\operatorname{cosec}^2 x d x}{16 \operatorname{cosec}^2 x-7} \\
& =\int \frac{\operatorname{cosec}^2 x d x}{16+16 \cot ^2 x-7}=\int \frac{\operatorname{cosec}^2 x d x}{16 \cot ^2 x+9}
\end{aligned}
$$

Let $\cot x=t,-\operatorname{cosec}^2 x d x=d t$
$$
\begin{aligned}
& =-\int \frac{d t}{16 t^2+9}=-\frac{1}{16} \int \frac{d t}{t^2+\left(\frac{3}{4}\right)^2} \\
& =-\frac{1}{16} \times \frac{1}{\left(\frac{3}{4}\right)} \tan ^{-1}\left(\frac{4 t}{3}\right)+C \\
& =\frac{-1}{12} \tan ^{-1}\left(\frac{4 \cot x}{3}\right)+C=\frac{1}{12} \tan ^{-1}\left(\frac{3 \tan x}{4}\right)+C .
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.