Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
164 . The solution of the differential equation $\sec ^{2} x \tan y d x+\sec ^{2} y \tan x d y=0$ is
MathematicsDifferential EquationsJEE Main
Options:
  • A $\tan y \cdot \tan x=C$
  • B $\frac{\tan y}{\tan x}=C$
  • C $\frac{\tan ^{2} x}{\tan y}=C$
  • D None of these
Solution:
2029 Upvotes Verified Answer
The correct answer is: $\tan y \cdot \tan x=C$
Given, $\frac{\sec ^{2} x}{\tan x} d x=-\frac{\sec ^{2} y}{\tan y} d y$
$$
\Rightarrow \int \frac{\sec ^{2} x}{\tan x} d x=-\int \frac{\sec ^{2} y}{\tan y} d y
$$
Put $\quad \tan x=u \Rightarrow \sec ^{2} x d x=d u$
and $\quad \tan y=v \Rightarrow \sec ^{2} y d y=d v$
$\therefore \quad \int \frac{d u}{u}=-\int \frac{d v}{v}$
$\Rightarrow \log u=-\log v+\log C \Rightarrow w v=C \Rightarrow \tan x \cdot \tan y=C$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.