Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$20^{2-3 x^2}=(40 \sqrt{5})^{3 x^2-2}$, then $x$ is equal to
MathematicsQuadratic EquationTS EAMCETTS EAMCET 2001
Options:
  • A $\pm \sqrt{\frac{3}{2}}$
  • B $\pm \sqrt{\frac{2}{3}}$
  • C $\pm \sqrt{\frac{4}{3}}$
  • D $\pm \sqrt{\frac{5}{4}}$
Solution:
1590 Upvotes Verified Answer
The correct answer is: $\pm \sqrt{\frac{2}{3}}$
We have,
$(20)^{2-3 x^2}=(40 \sqrt{5})^{3 x^2-2}$
On taking log on both sides, we get
$\left(2-3 x^2\right) \log 20=\left(3 x^2-2\right) \log 40 \sqrt{5}$
$\begin{aligned} & \Rightarrow\left(2-3 x^2\right)[2 \log 2+\log 5] \\ & =\left(3 x^2-2\right)\left(3 \log 2+\frac{3}{2} \log 5\right) \\ & \Rightarrow\left(3 x^2-2\right)\left[3 \log 2+\frac{3}{2} \log 5+2 \log 2+\log 5\right]=0 \\ & \Rightarrow\left(3 x^2-2\right)=0 \Rightarrow x^2=\frac{2}{3} \\ & \Rightarrow x= \pm \frac{\sqrt{2}}{3}\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.