Download MARKS App - Trusted by 15,00,000+ IIT JEE & NEET aspirants! Download Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\frac{1}{2}-\frac{1}{2 \cdot 2^2}+\frac{1}{3 \cdot 2^3}-\frac{1}{4 \cdot 2^4}+\ldots$ is equal to
MathematicsQuadratic EquationTS EAMCETTS EAMCET 2007
Options:
  • A $\frac{1}{4}$
  • B $\log _3\left(\frac{3}{4}\right)$
  • C $\log _e\left(\frac{3}{2}\right)$
  • D $\log _e\left(\frac{2}{3}\right)$
Solution:
1678 Upvotes Verified Answer
The correct answer is: $\log _e\left(\frac{3}{2}\right)$
Given,
$\frac{1}{2}-\frac{1}{2 \cdot 2^2}+\frac{1}{3 \cdot 2^3}-\frac{1}{4 \cdot 2^4}+\ldots$
On Comparing with
$\log _e(1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+\ldots \infty$
Put $x=\frac{1}{2}$ on both sides, we get
$\begin{aligned} \frac{1}{2}-\frac{1}{2 \cdot 2^2}+\frac{1}{3 \cdot 2^3}-\frac{1}{4 \cdot 2^4}+\ldots & =\log _e\left(1+\frac{1}{2}\right) \\ & =\log _e\left(\frac{3}{2}\right)\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.