Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int_{-2}^{2.24}[x] d x=$
where $[x]$ is the greatest integer function
MathematicsDefinite IntegrationMHT CETMHT CET 2020 (19 Oct Shift 1)
Options:
  • A 2
  • B 4
  • C $-2$
  • D 0
Solution:
2366 Upvotes Verified Answer
The correct answer is: $-2$
(D)
$\begin{aligned} \int_{-2}^{2}[\mathrm{x}] \mathrm{dx} &=\int_{-2}^{-1}-2 \mathrm{dx}+\int_{-1}^{0}-1 \mathrm{dx}+\int_{0}^{1} 0 \mathrm{dx}+\int_{1}^{2} 1 \mathrm{dx} \\ &=-2[\mathrm{x}]_{-2}^{-1}+(-1)[\mathrm{x}]_{-1}^{0}+1[\mathrm{x}]_{1}^{2} \\ &=-2[-1-(-2)]-1[-(-1)]+1[2-1] \\ &=-2[1]-1[1]+1[1]=-2-1+1=-2 \end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.