Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\left(2^{3 \mathrm{n}}-1\right)$ will be divisible by $(\forall \mathrm{n} \in \mathrm{N})$
MathematicsBinomial TheoremWBJEEWBJEE 2010
Options:
  • A 25
  • B 8
  • C 7
  • D 3
Solution:
1012 Upvotes Verified Answer
The correct answer is: 7
$$
\begin{aligned}
& \text { Hints: } 2^{3 \mathrm{n}}=(8)^{\mathrm{n}}=(1+7)^{\mathrm{n}}=={ }^{\mathrm{n}} \mathrm{C}_0+{ }^{\mathrm{n}} \mathrm{C}_1 7+{ }^{\mathrm{n}} \mathrm{C}_2 7^2+\ldots \ldots .+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}} 7^{\mathrm{n}} \\
& \Rightarrow 2^{3 \mathrm{n}}-1=7\left[{ }^{\mathrm{n}} \mathrm{C}_1+{ }^{\mathrm{n}} \mathrm{C}_2 7+\ldots \ldots \ldots \ldots+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}} 7^{\mathrm{n}-1}\right] \\
& \therefore \text { divisible by } 7
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.