Search any question & find its solution
Question:
Answered & Verified by Expert
$\int_2^3 \frac{d x}{x^2-x}$ is equal to
Options:
Solution:
1422 Upvotes
Verified Answer
The correct answer is:
$\log \frac{4}{3}$
We have,
$$
\begin{aligned}
\int_2^3 \frac{d x}{x^2-x} & =\int_2^3 \frac{1}{x(x-1)} d x \\
& =\int_2^3\left[-\frac{1}{x}+\frac{1}{x-1}\right] d x \\
& =\left[\log \frac{x-1}{x}\right]_2^3=\log \frac{2}{3}-\log \frac{1}{2}=\log \frac{4}{3}
\end{aligned}
$$
$$
\begin{aligned}
\int_2^3 \frac{d x}{x^2-x} & =\int_2^3 \frac{1}{x(x-1)} d x \\
& =\int_2^3\left[-\frac{1}{x}+\frac{1}{x-1}\right] d x \\
& =\left[\log \frac{x-1}{x}\right]_2^3=\log \frac{2}{3}-\log \frac{1}{2}=\log \frac{4}{3}
\end{aligned}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.