Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int_2^3 \frac{\log x}{x} d x=$
MathematicsIndefinite IntegrationMHT CETMHT CET 2022 (07 Aug Shift 1)
Options:
  • A $\frac{1}{2} \log 6 \log 3$
  • B $\log 6 \log \frac{3}{2}$
  • C $\frac{1}{2} \log 6 \log \frac{3}{2}$
  • D $2 \log 6 \log \frac{3}{2}$
Solution:
1397 Upvotes Verified Answer
The correct answer is: $\frac{1}{2} \log 6 \log \frac{3}{2}$
$\begin{aligned} & \int_2^3 \frac{\log x}{x} d x=\left[\frac{(\log x)^2}{2}\right]_2^3 \\ & =\frac{1}{2}\left\{(\log 3)^2-(\log 2)^2\right\} \\ & =\frac{1}{2}\{\log 3+\log 2\}\{\log 3-\log 2\} \\ & =\frac{1}{2} \log 6 \cdot \log \frac{3}{2}\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.