Search any question & find its solution
Question:
Answered & Verified by Expert
$\int \frac{\mathrm{d} x}{2+\cos x}=$ (Where $C$ is a constant of integration.)
Options:
Solution:
1183 Upvotes
Verified Answer
The correct answer is:
$\frac{2}{\sqrt{3}} \tan ^{-1}\left(\frac{\tan \left(\frac{x}{2}\right)}{\sqrt{3}}\right)+C$
$\begin{aligned} & \int \frac{\mathrm{d} x}{2+\cos x}=\int \frac{\mathrm{d} x}{2+\frac{1-\tan ^2 \frac{x}{2}}{1+\tan ^2 \frac{x}{2}}}=\int \frac{\sec ^2 \frac{x}{2} \mathrm{~d} x}{3+\tan ^2 \frac{x}{2}} \\ & =2 \int \frac{\frac{1}{2} \sec ^2 \frac{x}{2} \mathrm{~d} x}{(\sqrt{3})^2+\left(\tan \frac{x}{2}\right)^2}=\frac{2}{\sqrt{3}} \cdot \tan ^{-1}\left(\frac{\tan \frac{x}{2}}{\sqrt{3}}\right)\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.