Download MARKS App - Trusted by 15,00,000+ IIT JEE & NEET aspirants! Download Now
Search any question & find its solution
Question: Answered & Verified by Expert
$2 \cos ^{-1} \sqrt{\frac{1+x}{2}}=\frac{\pi}{2}$, then $x=$
MathematicsInverse Trigonometric FunctionsJEE Main
Options:
  • A $1$
  • B $0$
  • C $-1 / 2$
  • D $1 / 2$
Solution:
1114 Upvotes Verified Answer
The correct answer is: $0$
Given equation is
$2 \cos ^{-1} \sqrt{\left(\frac{1+x}{2}\right)}=\frac{\pi}{2}$
$\begin{aligned}
& \Rightarrow \cos ^{-1} \sqrt{\left(\frac{1+x}{2}\right)}=\frac{\pi}{4} \Rightarrow \cos \frac{\pi}{4}=\frac{\sqrt{1+x}}{\sqrt{2}} \\
& \Rightarrow \frac{1}{\sqrt{2}}=\frac{\sqrt{1+x}}{\sqrt{2}} \Rightarrow 1=\sqrt{1+x} \Rightarrow x=0 \\
&
\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.