Search any question & find its solution
Question:
Answered & Verified by Expert
$$
\left[\sqrt{2}\left(\cos 56^{\circ} 15^{\prime}+i \sin 56^{\circ} 15^{\prime}\right)\right]^8=
$$
Options:
\left[\sqrt{2}\left(\cos 56^{\circ} 15^{\prime}+i \sin 56^{\circ} 15^{\prime}\right)\right]^8=
$$
Solution:
2045 Upvotes
Verified Answer
The correct answer is:
$16 \mathrm{i}$
$\begin{aligned} & \text { }\left[\sqrt{2}\left(\cos 56^{\circ} 15^{\prime}+i \sin 56^{\circ} 15^{\prime}\right)\right]^8=(\sqrt{2})^8\left(i^\epsilon 6^{\circ} 15^1\right)^8 \\ & =2^4 e^{i\left(450^{\circ}\right)}=2^4 e^{i(360+90)} \quad\left\{\because e^{i \theta}=\cos \theta+i \sin \theta\right\} \\ & =2^4\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right)=16 i\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.