Search any question & find its solution
Question:
Answered & Verified by Expert
$\int_2^{\mathrm{e}}\left[\frac{1}{\log x}-\frac{1}{(\log x)^2}\right] d x=a+\frac{b}{\log 2}$, then
Options:
Solution:
1861 Upvotes
Verified Answer
The correct answer is:
$\mathrm{a}=\mathrm{e}, \mathrm{b}=-2$
$$
\mathrm{a}+\frac{\mathrm{b}}{\log 2}=\int_2^{\mathrm{e}}\left[\frac{1}{\log x}-\frac{1}{(\log x)^2}\right] \mathrm{dx}
$$
Put $\log \mathrm{x}=\mathrm{t} \Rightarrow \frac{1}{\mathrm{x}} \mathrm{dx}=\mathrm{dt} \Rightarrow \mathrm{dx}=\mathrm{e}^{\mathrm{t}} \mathrm{dt}$
When $\mathrm{x}=\mathrm{e}, \mathrm{t}=1$ and when $\mathrm{x}=2, \mathrm{t}=\log 2$
$$
\begin{aligned}
& \therefore a+\frac{b}{\log 2}=\int_{\log 2}^1\left(\frac{1}{t}-\frac{1}{t^2}\right) e^t \cdot d t=\left[e^t \cdot \frac{1}{t}\right]_{\log 2}^1=e-\frac{e^{\log 2}}{\log 2}=e-\frac{2}{\log 2} \\
& \therefore a=e, b=-2
\end{aligned}
$$
\mathrm{a}+\frac{\mathrm{b}}{\log 2}=\int_2^{\mathrm{e}}\left[\frac{1}{\log x}-\frac{1}{(\log x)^2}\right] \mathrm{dx}
$$
Put $\log \mathrm{x}=\mathrm{t} \Rightarrow \frac{1}{\mathrm{x}} \mathrm{dx}=\mathrm{dt} \Rightarrow \mathrm{dx}=\mathrm{e}^{\mathrm{t}} \mathrm{dt}$
When $\mathrm{x}=\mathrm{e}, \mathrm{t}=1$ and when $\mathrm{x}=2, \mathrm{t}=\log 2$
$$
\begin{aligned}
& \therefore a+\frac{b}{\log 2}=\int_{\log 2}^1\left(\frac{1}{t}-\frac{1}{t^2}\right) e^t \cdot d t=\left[e^t \cdot \frac{1}{t}\right]_{\log 2}^1=e-\frac{e^{\log 2}}{\log 2}=e-\frac{2}{\log 2} \\
& \therefore a=e, b=-2
\end{aligned}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.