Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int_{-\pi}^{\frac{\pi}{2}} \sin x \cdot \sin ^2(\cos x) d x=$
MathematicsDefinite IntegrationAP EAMCETAP EAMCET 2023 (17 May Shift 1)
Options:
  • A $\frac{1-\sin 2}{4}$
  • B $-\left(\frac{1+\sin 2}{4}\right)$
  • C $\frac{\sin 2-2}{4}$
  • D $-\left(\frac{2+\sin 2}{4}\right)$
Solution:
1008 Upvotes Verified Answer
The correct answer is: $\frac{\sin 2-2}{4}$
$I=\int_{-\pi}^{\frac{\pi}{2}} \sin x \cdot \sin ^2(\cos x) d x$
Let $\cos x=t \Rightarrow-\sin x d x=d t$
$\begin{aligned}
& \therefore \mathrm{I}=\int_{-1}^0 \sin ^2 t(-d t)=-\int_{-1}^0 \frac{1}{2}(1-\cos 2 x) d x \\
& =-\frac{1}{2}\left[x-\frac{\sin 2 x}{2}\right]_{-1}^0=-\frac{1}{2}\left[0-(-1)+\frac{\sin (-2)}{2}\right] \\
& =\frac{1}{2}\left[\frac{\sin (2)}{2}-1\right] \\
& =-\frac{1}{2}\left[\frac{\sin (2)-2}{2}\right]=\frac{\sin 2-2}{4}
\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.