Search any question & find its solution
Question:
Answered & Verified by Expert
$2 \tan \mathrm{h}^{-1} \frac{1}{2}$ is equal to
Options:
Solution:
1546 Upvotes
Verified Answer
The correct answer is:
$\log 3$
$\begin{aligned} 2 \tanh ^{-1} & \left(\frac{1}{2}\right) \\ & =\tanh ^{-1} \frac{2\left(\frac{1}{2}\right)}{1+\left(\frac{1}{2}\right)^2} \\ & {\left[\because 2 \tanh ^{-1} x=\tanh ^{-1} \frac{2 x}{1+x^2}\right] }\end{aligned}$
$\begin{aligned} & =\tanh ^{-1} \frac{4}{5}=\frac{1}{2} \log \left(\frac{1+\frac{4}{5}}{1-\frac{4}{5}}\right) \\ & \qquad \quad\left[\because \tanh ^{-1} x=\frac{1}{2} \log \left(\frac{1+x}{1-x}\right)\right] \\ & =\frac{1}{2} \log \left(\frac{\frac{9}{5}}{\frac{1}{5}}\right)=\frac{1}{2} \log 3^2=\log 3\end{aligned}$
$\begin{aligned} & =\tanh ^{-1} \frac{4}{5}=\frac{1}{2} \log \left(\frac{1+\frac{4}{5}}{1-\frac{4}{5}}\right) \\ & \qquad \quad\left[\because \tanh ^{-1} x=\frac{1}{2} \log \left(\frac{1+x}{1-x}\right)\right] \\ & =\frac{1}{2} \log \left(\frac{\frac{9}{5}}{\frac{1}{5}}\right)=\frac{1}{2} \log 3^2=\log 3\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.