Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$2 \tan \mathrm{h}^{-1} \frac{1}{2}$ is equal to
MathematicsInverse Trigonometric FunctionsTS EAMCETTS EAMCET 2005
Options:
  • A 0
  • B $\log 2$
  • C $\log 3$
  • D $\log 4$
Solution:
1546 Upvotes Verified Answer
The correct answer is: $\log 3$
$\begin{aligned} 2 \tanh ^{-1} & \left(\frac{1}{2}\right) \\ & =\tanh ^{-1} \frac{2\left(\frac{1}{2}\right)}{1+\left(\frac{1}{2}\right)^2} \\ & {\left[\because 2 \tanh ^{-1} x=\tanh ^{-1} \frac{2 x}{1+x^2}\right] }\end{aligned}$
$\begin{aligned} & =\tanh ^{-1} \frac{4}{5}=\frac{1}{2} \log \left(\frac{1+\frac{4}{5}}{1-\frac{4}{5}}\right) \\ & \qquad \quad\left[\because \tanh ^{-1} x=\frac{1}{2} \log \left(\frac{1+x}{1-x}\right)\right] \\ & =\frac{1}{2} \log \left(\frac{\frac{9}{5}}{\frac{1}{5}}\right)=\frac{1}{2} \log 3^2=\log 3\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.