Search any question & find its solution
 Question:  
Answered & Verified by Expert
 
 $\int 2^{x}\left[f^{\prime}(x)+f(x) \log 2\right] d x$ is equal to
  Options:
            Solution: 
    1293 Upvotes
  
Verified Answer
 
 
The correct answer is:
$2^{x} f(x)+C$ 
 Let $I=\int 2^{n}\left[f^{\prime}(x)+f(x) \log 2\right] d x$
$\begin{array}{ll}\text { Consider } & g(x)=2^{x} f(x) \\ \Rightarrow & g^{\prime}(x)=2^{x} f^{\prime}(x)+2^{x} f(x) \log 2 \\ \Rightarrow & g^{\prime}(x)=2^{x}\left[f^{\prime}(x)+f(x) \log 2\right] \\ \therefore \quad & \quad I=\int g^{\prime}(x) d x=g(x)+C=2^{x} f(x)+C\end{array}$
 $\begin{array}{ll}\text { Consider } & g(x)=2^{x} f(x) \\ \Rightarrow & g^{\prime}(x)=2^{x} f^{\prime}(x)+2^{x} f(x) \log 2 \\ \Rightarrow & g^{\prime}(x)=2^{x}\left[f^{\prime}(x)+f(x) \log 2\right] \\ \therefore \quad & \quad I=\int g^{\prime}(x) d x=g(x)+C=2^{x} f(x)+C\end{array}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.