Download MARKS App - Trusted by 15,00,000+ IIT JEE & NEET aspirants! Download Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int \frac{1}{3-2 \cos 2 x} \mathrm{~d} x=$ (where $C$ is constant of integration.)
MathematicsIndefinite IntegrationMHT CETMHT CET 2022 (10 Aug Shift 2)
Options:
  • A $\frac{2}{5} \tan ^{-1}(5 \tan x)+C$
  • B $\frac{1}{\sqrt{5}} \tan ^{-1}(\sqrt{5} \tan x)+C$
  • C $\frac{2}{\sqrt{5}} \tan ^{-1}(\sqrt{5} \tan x)+C$
  • D $\frac{1}{5} \tan ^{-1}(5 \tan x)+C$
Solution:
2813 Upvotes Verified Answer
The correct answer is: $\frac{1}{\sqrt{5}} \tan ^{-1}(\sqrt{5} \tan x)+C$
$\begin{aligned} & \int \frac{\mathrm{d} x}{3-2 \cos 2 x}=\int \frac{\mathrm{d} x}{3-2 \times \frac{1-\tan ^2 x}{1+\tan ^2 x}}=\int \frac{\sec ^2 x \mathrm{~d} x}{5 \tan ^2 x+1} \\ & =\int \frac{\mathrm{d} t}{5 t^2+1}[\text { let } \tan x=t] \\ & =\int \frac{\mathrm{d} t}{(\sqrt{5} t)^2+1^2}=\frac{1}{\sqrt{5}} \tan ^{-1}\left(\frac{\sqrt{5} t}{1}\right)+C \\ & =\frac{1}{\sqrt{5}} \tan ^{-1}(\sqrt{5} \tan x)+C\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.