Download MARKS App - Trusted by 15,00,000+ IIT JEE & NEET aspirants! Download Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int_{\pi / 3}^{\pi / 2} x \sin (\pi[x]-x) \mathrm{dx}$ is equal to
MathematicsDefinite IntegrationBITSATBITSAT 2020
Options:
  • A $\frac{1}{2}+\frac{\pi}{6}$
  • B $1-\frac{\sqrt{3}}{2}+\frac{\pi}{6}$
  • C $-\frac{1}{2}-\frac{\pi}{6}$
  • D $\frac{\sqrt{3}}{2}-1-\frac{\pi}{6}$
Solution:
1863 Upvotes Verified Answer
The correct answer is: $1-\frac{\sqrt{3}}{2}+\frac{\pi}{6}$
In the interval $\frac{\pi}{3}$ to $\frac{\pi}{2},[\mathrm{x}]=1$ $\begin{aligned} \therefore \mathrm{I} &=\int_{\pi / 3}^{\pi / 2} \mathrm{x} \sin (\pi-\mathrm{x}) \mathrm{dx}=\int_{\pi / 3}^{\pi / 2} \mathrm{x} \sin \mathrm{x} \mathrm{d} \mathrm{x} \\ &=[-\mathrm{x} \cos \mathrm{x}+\sin \mathrm{x}]_{\pi / 3}^{\pi / 2}=1-\frac{\sqrt{3}}{2}+\frac{\pi}{6} \end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.