Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int \frac{1}{3 \cos x-4 \sin x+5} d x=$
MathematicsIndefinite IntegrationTS EAMCETTS EAMCET 2023 (13 May Shift 1)
Options:
  • A $\frac{2}{\sqrt{5}} \tan ^{-1}\left(\frac{3 \tan \frac{x}{2}+4}{\sqrt{5}}\right)+c$
  • B $\frac{3}{4} \tan ^{-1}\left(\frac{\tan \frac{x}{2}}{3}\right)+c$
  • C $\frac{1}{2-\tan \frac{x}{2}}+c$
  • D $\frac{1}{1+\tan \frac{x}{2}}+c$
Solution:
2582 Upvotes Verified Answer
The correct answer is: $\frac{1}{2-\tan \frac{x}{2}}+c$
$$
\begin{aligned}
\text { } & \int \frac{d x}{3 \cos x-4 \sin x+5} \\
= & \int \frac{d x}{\left(\frac{1-\tan ^2 \frac{x}{2}}{1+\tan ^2 \frac{x}{2}}\right)-4\left(\frac{2 \tan \frac{x}{2}}{1+\tan ^2 \frac{x}{2}}\right)+5} \\
= & \int \frac{\left(1+\tan ^2 \frac{x}{2}\right) d x}{3\left(1-\tan ^2 \frac{x}{2}\right)-4\left(2 \tan \frac{x}{2}\right)+5\left(1+\tan ^2 \frac{x}{2}\right)} \\
= & \int \frac{\sec ^2 \frac{x}{2} d x}{2 \tan ^2 \frac{x}{2}-8 \tan \frac{x}{2}+8}=\frac{1}{2} \int \frac{\sec ^2 \frac{x}{2} d x}{\tan ^2 \frac{x}{2}-4 \tan \frac{x}{2}+4} \\
= & \frac{1}{2} \int \frac{\sec ^2 \frac{x}{2} d x}{\left(\tan ^{\frac{x}{2}}-2\right)^2}
\end{aligned}
$$

Let $\tan \frac{x}{2}-2=u, \frac{1}{2} \sec ^2 \frac{x}{2} d x=d u$
$$
\begin{aligned}
& =\int \frac{d u}{u^2}=\frac{-1}{u}+C \\
& =\frac{-1}{\tan \frac{x}{2}-2}+C=\frac{1}{2-\tan \frac{x}{2}}+C .
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.