Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\sqrt{3} \operatorname{cosec} 20^{\circ}-\sec 20^{\circ}$ is equal to
MathematicsTrigonometric Ratios & IdentitiesTS EAMCETTS EAMCET 2008
Options:
  • A $2$
  • B $2 \sin 20^{\circ} \cdot \operatorname{cosec} 40^{\circ}$
  • C $4$
  • D $4 \sin 20^{\circ} \cdot \operatorname{cosec} 40^{\circ}$
Solution:
2565 Upvotes Verified Answer
The correct answer is: $4$
$\begin{aligned} & \sqrt{3} \operatorname{cosec} 20^{\circ}-\sec 20^{\circ} \\ &=\frac{\tan 60^{\circ}}{\sin 20^{\circ}}-\frac{1}{\cos 20^{\circ}} \\ &=\frac{\sin 60^{\circ} \cos 20^{\circ}-\sin 20^{\circ} \cos 60^{\circ}}{\cos 60^{\circ} \sin 20^{\circ} \cos 20^{\circ}} \\ &=\frac{\sin 40^{\circ}}{\cos 60^{\circ} \sin 20^{\circ} \cos 20^{\circ}} \\ &=\frac{2 \sin 20^{\circ} \cos 20^{\circ}}{\frac{1}{2}\left(\sin 20^{\circ} \cos 20^{\circ}\right)}=4\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.