Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\begin{array}{llll}\text { 3. The sum } & \text { of } & \text { the } & \text { series }\end{array}$ $1+\frac{1}{2}{ }^{n} C_{1}+\frac{1}{3}{ }^{n} C_{2}+\quad+\frac{1}{n+1}{ }^{n} C_{n}$ is equal to
MathematicsBinomial TheoremJEE Main
Options:
  • A $\frac{2^{n+1}-1}{n+1}$
  • B $\frac{3\left(2^{n}-1\right)}{2 n}$
  • C $\frac{2^{n}+1}{n+1}$
  • D $\frac{2^{n}+1}{2 n}$
Solution:
2502 Upvotes Verified Answer
The correct answer is: $\frac{2^{n+1}-1}{n+1}$
$1+\frac{1}{2}{ }^{n} C_{1}+\frac{1}{3}{ }^{n} C_{2}+\quad+\frac{1}{n+1}{ }^{n} C_{n}$
$=\frac{1}{n+1}\left[(n+1)+\frac{(n+1) n}{21}\right.$
$+\frac{(n+1) n(n-1)}{3 !}+(1]$
$=\frac{1}{n+1}\left[^{n+1} C_{1}+{ }^{n+1} C_{2}+\quad+{ }^{n+1} C_{n+1}\right]$
\(=\frac{2^{n+1}-1}{n+1}\)

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.