Download MARKS App - Trusted by 15,00,000+ IIT JEE & NEET aspirants! Download Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int \frac{d x}{32-2 x^2}=A \log (4-x)+B \log (4+x)+c$, then the value of $\mathrm{A}$ and $\mathrm{B}$ are respectively (where $\mathrm{c}$ is a constant of integration)
MathematicsTrigonometric Ratios & IdentitiesMHT CETMHT CET 2021 (23 Sep Shift 1)
Options:
  • A $\frac{-1}{8}, \frac{1}{8}$
  • B $\frac{1}{8}, \frac{-1}{8}$
  • C $\frac{-1}{16}, \frac{1}{16}$
  • D $\frac{1}{8}, \frac{1}{8}$
Solution:
2126 Upvotes Verified Answer
The correct answer is: $\frac{-1}{16}, \frac{1}{16}$
Let $I=\int \frac{d x}{32-2 x^2}$
$$
=\frac{1}{2}\left[\frac{1}{2(4)} \log \left|\frac{4+\mathrm{x}}{4-\mathrm{x}}\right|\right]+\mathrm{c}=\frac{1}{16}[\log |4+\mathrm{x}|-\log |4-\mathrm{x}|]+\mathrm{c}
$$
Comparing with given data we get $\mathrm{A}=\frac{-1}{16}, \mathrm{~B}=\frac{1}{16}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.