Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$$
\int_{-4 \pi}^{4 \pi} \tan ^9 x \sin ^6 x \cos ^3 x d x=
$$
MathematicsDefinite IntegrationAP EAMCETAP EAMCET 2023 (18 May Shift 2)
Options:
  • A $16 \times \frac{\pi}{2}$
  • B $8 \times \frac{2}{3}$
  • C $16 \times \frac{14}{17} \times \frac{12}{15} \times \ldots \times \frac{2}{3}$
  • D 0
Solution:
1615 Upvotes Verified Answer
The correct answer is: 0
$$
\begin{aligned}
& \text {} \int_{-4 \pi}^{4 \pi} \tan ^9 x \sin ^6 x \cos ^3 x d x \\
& \text { here } f(x)=\tan ^9 x \sin ^6 x \cos ^3 x \\
& \Rightarrow f(-x)=[\tan (-x)]^9[\sin (-x)]^6[\cos (-x)]^3 \\
& \Rightarrow f(-x)=-\tan ^9 x \cdot \sin ^6 x \cos ^3 x=-f(x)
\end{aligned}
$$
$\mathrm{f}(\mathrm{x})$ is an odd function.
$$
\therefore \int_{-4 \pi}^{4 \pi} \tan ^9 x \sin ^6 x \cos ^3 x d x=0
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.