Search any question & find its solution
 Question:  
Answered & Verified by Expert
 
 $$
\int_{-4 \pi}^{4 \pi} \tan ^9 x \sin ^6 x \cos ^3 x d x=
$$
  Options:
           \int_{-4 \pi}^{4 \pi} \tan ^9 x \sin ^6 x \cos ^3 x d x=
$$
 Solution: 
    1615 Upvotes
  
Verified Answer
 
 
The correct answer is:
0 
 $$
\begin{aligned}
& \text {} \int_{-4 \pi}^{4 \pi} \tan ^9 x \sin ^6 x \cos ^3 x d x \\
& \text { here } f(x)=\tan ^9 x \sin ^6 x \cos ^3 x \\
& \Rightarrow f(-x)=[\tan (-x)]^9[\sin (-x)]^6[\cos (-x)]^3 \\
& \Rightarrow f(-x)=-\tan ^9 x \cdot \sin ^6 x \cos ^3 x=-f(x)
\end{aligned}
$$
$\mathrm{f}(\mathrm{x})$ is an odd function.
$$
\therefore \int_{-4 \pi}^{4 \pi} \tan ^9 x \sin ^6 x \cos ^3 x d x=0
$$
 \begin{aligned}
& \text {} \int_{-4 \pi}^{4 \pi} \tan ^9 x \sin ^6 x \cos ^3 x d x \\
& \text { here } f(x)=\tan ^9 x \sin ^6 x \cos ^3 x \\
& \Rightarrow f(-x)=[\tan (-x)]^9[\sin (-x)]^6[\cos (-x)]^3 \\
& \Rightarrow f(-x)=-\tan ^9 x \cdot \sin ^6 x \cos ^3 x=-f(x)
\end{aligned}
$$
$\mathrm{f}(\mathrm{x})$ is an odd function.
$$
\therefore \int_{-4 \pi}^{4 \pi} \tan ^9 x \sin ^6 x \cos ^3 x d x=0
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.