Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int \frac{d x}{4+5 \cos x}=$
MathematicsIndefinite IntegrationAP EAMCETAP EAMCET 2023 (15 May Shift 2)
Options:
  • A $-\frac{1}{3} \log \left|\frac{3+\tan \frac{x}{2}}{3-\tan \frac{x}{2}}\right|+C$
  • B $\frac{1}{3} \log \left|\frac{3+\tan \frac{x}{2}}{3-\tan \frac{x}{2}}\right|+C$
  • C $-\frac{1}{9} \log \left|\frac{3-\tan \frac{x}{2}}{3+\tan \frac{x}{2}}\right|+C$
  • D $\frac{1}{9} \log \left|\frac{3-\tan \frac{x}{2}}{3+\tan \frac{x}{2}}\right|+C$
Solution:
2282 Upvotes Verified Answer
The correct answer is: $\frac{1}{3} \log \left|\frac{3+\tan \frac{x}{2}}{3-\tan \frac{x}{2}}\right|+C$
$\begin{aligned}
& \text {Let } I=\int \frac{1}{4+5 \cos x} d x \\
& =\int \frac{1}{4+5\left(\frac{1-\tan ^2 x / 2}{1+\tan ^2 x / 2}\right)} d x
\end{aligned}$
Let $u=\tan \frac{x}{2} \Rightarrow \frac{d u}{d x}=\frac{\sec ^2 \frac{x}{2}}{2} d u$
$\begin{aligned} & =-2 \int \frac{1}{u^2-9} d u=\frac{1}{3} \int\left(\frac{1}{u+3}+\frac{1}{u-3}\right) d u \\ & =\frac{1}{3} \ln \left(\frac{3+u}{3-u}\right)+c=\frac{1}{3} \ln \left(\frac{\tan \frac{x}{2}+3}{3-\tan \frac{x}{2}}\right)+C\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.