Search any question & find its solution
Question:
Answered & Verified by Expert
$$
\left(4 \cos ^2 9^{\circ}-3\right)\left(4 \cos ^2 27^{\circ}-3\right)=
$$
Options:
\left(4 \cos ^2 9^{\circ}-3\right)\left(4 \cos ^2 27^{\circ}-3\right)=
$$
Solution:
2319 Upvotes
Verified Answer
The correct answer is:
$\tan 9^{\circ}$
$\begin{aligned} &\left(4 \cos ^2 9^{\circ}-3\right)\left(4 \cos ^2 27^{\circ}-3\right) \\ &= \frac{1}{\cos 9^{\circ}}\left(4 \cos ^3 9^{\circ}-3 \cos 9^{\circ}\right) \times \frac{1}{\cos 27^{\circ}} \\ &\left(4 \cos ^3 27^{\circ}-3 \cos 27^{\circ}\right) \\ &= \frac{1}{\cos 9^{\circ}}\left(\cos 27^{\circ}\right) \times \frac{1}{\cos 27^{\circ}}\left(\cos 81^{\circ}\right) \\ &= \frac{\cos \left(90^{\circ}-9^{\circ}\right)}{\cos 9^{\circ}}=\frac{\sin 9^{\circ}}{\cos 9^{\circ}}=\tan 9^{\circ}\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.