Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int \frac{\cos x-\sin x}{5+\sin (2 x)} d x=$
MathematicsIndefinite IntegrationAP EAMCETAP EAMCET 2020 (22 Sep Shift 1)
Options:
  • A $\frac{1}{2} \cot ^{-1}\left[\frac{1}{2}(\sin x+\cos x)\right]+c$
  • B $\frac{1}{2} \tan ^{-1}\left[\frac{1}{2}(\sin x+\cos x)\right]+c$
  • C $\frac{1}{2} \sin ^{-1}\left[\frac{1}{2}(\sin x+\cos x)\right]+c$
  • D $\frac{1}{2} \cos ^{-1}\left[\frac{1}{2}(\sin x+\cos x)\right]+c$
Solution:
1868 Upvotes Verified Answer
The correct answer is: $\frac{1}{2} \tan ^{-1}\left[\frac{1}{2}(\sin x+\cos x)\right]+c$
$$
\text { } \begin{aligned}
I & =\int \frac{\cos x-\sin x}{5+\sin 2 x} d x \\
& =\int \frac{\cos x-\sin x}{4+(\sin x+\cos x)^2} d x
\end{aligned}
$$

Let $\sin x+\cos x=t \Rightarrow(\cos x-\sin x) d x=d t$
$$
\begin{aligned}
\therefore \quad I & =\int \frac{d t}{4+t^2}=\frac{1}{2} \tan ^{-1}\left(\frac{t}{2}\right)+C \\
& =\frac{1}{2} \tan ^{-1}\left(\frac{\sin x+\cos x}{2}\right)+C
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.