Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int_{\pi / 6}^{\pi / 3} \frac{\sin ^{3} x}{\sin ^{3} x+\cos ^{3} x} d x$ is equal to
MathematicsDefinite IntegrationKCETKCET 2012
Options:
  • A $\frac{\pi}{2}$
  • B $\frac{\pi}{3}$
  • C $\frac{\pi}{12}$
  • D $\frac{\pi}{6}$
Solution:
2292 Upvotes Verified Answer
The correct answer is: $\frac{\pi}{6}$
Let $I=\int_{\pi / 6}^{\pi / 3} \frac{\sin ^{3} x}{\sin ^{3} x+\cos ^{3} x} d x$
$$
\begin{aligned}
&=\int_{\pi / 6}^{\pi / 3} \frac{\sin ^{3}\left(\frac{\pi}{3}+\frac{\pi}{6}-x\right)}{\sin ^{3}\left(\frac{\pi}{3}+\frac{\pi}{6}-x\right)+\cos ^{3}\left(\frac{\pi}{3}+\frac{\pi}{6}-x\right)} d x \\
&=\int_{\pi / 6}^{\pi / 3} \frac{\sin ^{3}\left(\frac{\pi}{2}-x\right)}{\sin ^{3}\left(\frac{\pi}{2}-x\right)+\cos ^{3}\left(\frac{\pi}{2}-x\right)} d x \\
&I=\int_{\pi / 6}^{\pi / 3} \frac{\cos ^{3} x}{\cos ^{3} x+\sin ^{3} x} d x
\end{aligned}
$$
On adding Eqs. (i) and (ii), we get
$$
\begin{aligned}
2 \mathrm{I} &=\int_{\pi / 6}^{\pi / 3} \frac{\sin ^{3} x+\cos ^{3} x}{\cos ^{3} x+\sin ^{3} x} d x \\
&=[x]_{\pi / 6}^{\pi / 3} \\
&=\frac{\pi}{3}-\frac{\pi}{6}=\frac{2 \pi-\pi}{6}=\frac{\pi}{6}
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.