Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
77. If $5 f(x)+3 f\left(\frac{1}{x}\right)=2-\frac{1}{x}, x \neq 0$, then $\int_1^2 f\left(\frac{1}{x}\right) d x=$
MathematicsIndefinite IntegrationAP EAMCETAP EAMCET 2023 (17 May Shift 2)
Options:
  • A $\frac{6 \log 2-7}{32}$
  • B $\frac{6 \log 2-17}{32}$
  • C $\frac{6 \log 2-1}{32}$
  • D $\frac{6 \log 2-7}{16}$
Solution:
1716 Upvotes Verified Answer
The correct answer is: $\frac{6 \log 2-7}{32}$
$5 f(x)+3 f\left(\frac{1}{x}\right)=2-\frac{1}{x}$ ...(i)
Put $x=\frac{1}{x}$ in above equation:
$5 f\left(\frac{1}{x}\right)+3 f(x)=2-x$ ...(ii)
Equation (ii) $\times 5-$ (i) $\times 3$ :
$\begin{aligned} & \Rightarrow 16 f\left(\frac{1}{x}\right)=10-5 x-6+\frac{3}{x} \\ & \Rightarrow f\left(\frac{1}{x}\right)=\frac{1}{16}\left[4-5 x+\frac{3}{x}\right]\end{aligned}$


$=\frac{1}{16}\left[4 x-\frac{5 x^2}{2}+3 \ln x\right]_1^2=\frac{6 \ln 2-7}{32}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.