Search any question & find its solution
Question:
Answered & Verified by Expert
77. If $5 f(x)+3 f\left(\frac{1}{x}\right)=2-\frac{1}{x}, x \neq 0$, then $\int_1^2 f\left(\frac{1}{x}\right) d x=$
Options:
Solution:
1716 Upvotes
Verified Answer
The correct answer is:
$\frac{6 \log 2-7}{32}$
$5 f(x)+3 f\left(\frac{1}{x}\right)=2-\frac{1}{x}$ ...(i)
Put $x=\frac{1}{x}$ in above equation:
$5 f\left(\frac{1}{x}\right)+3 f(x)=2-x$ ...(ii)
Equation (ii) $\times 5-$ (i) $\times 3$ :
$\begin{aligned} & \Rightarrow 16 f\left(\frac{1}{x}\right)=10-5 x-6+\frac{3}{x} \\ & \Rightarrow f\left(\frac{1}{x}\right)=\frac{1}{16}\left[4-5 x+\frac{3}{x}\right]\end{aligned}$
$=\frac{1}{16}\left[4 x-\frac{5 x^2}{2}+3 \ln x\right]_1^2=\frac{6 \ln 2-7}{32}$
Put $x=\frac{1}{x}$ in above equation:
$5 f\left(\frac{1}{x}\right)+3 f(x)=2-x$ ...(ii)
Equation (ii) $\times 5-$ (i) $\times 3$ :
$\begin{aligned} & \Rightarrow 16 f\left(\frac{1}{x}\right)=10-5 x-6+\frac{3}{x} \\ & \Rightarrow f\left(\frac{1}{x}\right)=\frac{1}{16}\left[4-5 x+\frac{3}{x}\right]\end{aligned}$
$=\frac{1}{16}\left[4 x-\frac{5 x^2}{2}+3 \ln x\right]_1^2=\frac{6 \ln 2-7}{32}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.