Download MARKS App - Trusted by 15,00,000+ IIT JEE & NEET aspirants! Download Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\int \frac{d x}{a^2 \sin ^2 x+b^2 \cos ^2 x}$ is equal to
MathematicsIndefinite IntegrationTS EAMCETTS EAMCET 2001
Options:
  • A $\frac{1}{a b} \tan ^{-1}\left(\frac{a \tan x}{b}\right)+C$
  • B $\tan ^{-1}\left(\frac{a \tan x}{b}\right)+C$
  • C $\frac{1}{a b} \tan ^{-1}\left(\frac{b \tan x}{a}\right)+C$
  • D $\tan ^{-1}\left(\frac{b \tan x}{a}\right)+C$
Solution:
1093 Upvotes Verified Answer
The correct answer is: $\frac{1}{a b} \tan ^{-1}\left(\frac{a \tan x}{b}\right)+C$
$\begin{aligned} & \int \frac{d x}{a^2 \sin ^2 x+b^2 \cos ^2 x} \\ & =\frac{1}{a^2} \int \frac{\sec ^2 x d x}{\left(\frac{b}{a}\right)^2+\tan ^2 x} \\ & \Rightarrow \quad=\frac{1}{a b} \tan ^{-1}\left(\frac{a \tan x}{b}\right)+C\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.