Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A $4 \mathrm{~kg}$ object has a velocity, $3.0 \hat{\mathrm{i}} \mathrm{m} / \mathrm{s}$ at some instant. Eights seconds later, its velocity is $(8.0 \hat{\mathbf{i}}+10.0 \hat{\mathbf{j}}) \mathrm{m} / \mathrm{s}$. Assuming that the object is subjected to a constant net force, the magnitude of the force is
PhysicsLaws of MotionTS EAMCETTS EAMCET 2019 (04 May Shift 1)
Options:
  • A $\frac{5 \sqrt{5}}{2} \mathrm{~N}$
  • B $\frac{5 \sqrt{3}}{8} \mathrm{~N}$
  • C $\frac{8 \sqrt{5}}{3} \mathrm{~N}$
  • D $\frac{10 \sqrt{3}}{7} \mathrm{~N}$
Solution:
2887 Upvotes Verified Answer
The correct answer is: $\frac{5 \sqrt{5}}{2} \mathrm{~N}$
Given, mass of an object, $m=4 \mathrm{~kg}, \mathrm{u}=3 \mathrm{im} / \mathrm{s}$ $\mathbf{v}=(8 \hat{\mathbf{i}}+10 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}$ and time $t=8 \mathrm{~s}$
As we know, equation of the motion
$$
\begin{array}{rlrl}
\mathbf{v} & =\mathbf{u}+\mathbf{a} t \\
\Rightarrow & & 8 \hat{\hat{\mathbf{i}}}+10 \hat{\mathbf{j}} & =3 \hat{\hat{\mathbf{i}}}+\mathbf{a} \times 8 \\
\Rightarrow & & \mathbf{a} & =\frac{1}{8}(5 \hat{\mathbf{i}}+10 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}^2
\end{array}
$$
So, force $\mathbf{F}=$ ma
$$
\begin{aligned}
\quad \mathbf{F} & =\frac{4}{8}(5 \hat{\mathrm{i}}+10 \hat{\mathrm{j}})=\frac{1}{2}(5 \hat{\mathrm{i}}+10 \hat{\mathrm{j}}) \mathrm{N} \\
\Rightarrow \quad F & =\frac{1}{2} \sqrt{5^2+10^2}=\frac{5 \sqrt{5}}{2} \mathrm{~N}
\end{aligned}
$$
Hence, the option (1) is correct.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.