Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\mathrm{A}^7 \mathrm{Li}$ target is bombarded with a proton beam current of $10^{-4} \mathrm{~A}$ for one hour to produce ${ }^7 \mathrm{Be}$ of activity $1.8 \times 10^8$ disintegrations per second. Assuming that one ${ }^7$ Be radioactive nuclei is produced by bombarding 1000 protons, its half-life is
PhysicsNuclear PhysicsJIPMERJIPMER 2016
Options:
  • A $0.87 \times 10^7 \mathrm{~s}$
  • B $0.2 \times 10^7 \mathrm{~s}$
  • C $0.67 \times 10^8 \mathrm{~s}$
  • D $0.87 \times 10^6 \mathrm{~s}$
Solution:
2906 Upvotes Verified Answer
The correct answer is: $0.87 \times 10^7 \mathrm{~s}$

Given, $i=10^{-4} \mathrm{~A}, t=1 \mathrm{~h}=3600 \mathrm{~s}$ We know that, $q=$ it
$=10^{-4} \times 1 \times 3600=0.36 \mathrm{C}$
$\therefore$ Number of protons $=\frac{q}{e}=\frac{0.36}{1.6 \times 10^{-19}}$
$\left[\because e=1.6 \times 10^{-19} \mathrm{C}\right]$
$=2.25 \times 10^8$
Number of ${ }^7$ Be nuclei produced
$=\frac{2.25 \times 10^{18}}{1000}=2.25 \times 10^{15}$
Activity of ${ }^7 \mathrm{Be}=1.8 \times 10^8$ disintegration $/ \mathrm{s}$
$\begin{aligned} \therefore \text { Activity, } A & =\lambda N \\ & =\frac{\ln 2}{t_{1 / 2}} N\end{aligned}$
$\left[\because \lambda=\frac{\ln 2}{t_{1 / 2}}\right]$
$1.8 \times 10^8=\frac{0.693}{t_{1 / 2}} \times 2.25 \times 10^{15}$
$\therefore \quad t_{1 / 2}=\frac{0.693 \times 2.25 \times 10^{15}}{1.8 \times 10^8}=0.87 \times 10^7 \mathrm{~s}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.