Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A(a), B(b), C(c), D(d) are four concyclic points, such that xa+yb+zc+td=0, x+y+z+t=0, where x, y, z, t are constants not all zero. If the chords AB and CD intersect at P, then
MathematicsVector AlgebraTS EAMCETTS EAMCET 2020 (09 Sep Shift 1)
Options:
  • A xya+c2=ztb+d2
  • B xya-b2=ztc-d2
  • C xta-c2=yzb-d2
  • D xzb+d2=yta+c2
Solution:
1701 Upvotes Verified Answer
The correct answer is: xya-b2=ztc-d2

We are given that Aa, Bb, Cc & Dd are four concyclic points such that

xa+yb+zc+td=0  ...i

x+y+z+t=0  ...ii

Now, we know that angle subtended by chord on same side of circle are equal therefore 

A=CB=DP=P

Hence, by AAA

APD~CPB

So,

APCP=PDPB

r-ar-c=r-dr-b  ...iii

Now, equation of line AB

r=a+k1a-br-a=k1a-b  ...iv

r=b+k2a-br-b=k2a-b  ...v

Now, equation of line CD

r=c+k3c-dr-c=k3c-d  ...vi

r=d+k4c-dr-d=k4c-d  ...vii

Putting these values in iii, we get

k1k2a-b2=k3k4c-d2  ...viii

Now equating iv & vi, we get

a+k1a-b=c+k3c-d

1+k1a-k1b-1+k3c+k3d=0

Comparing this with equation i, we get

x=1+k1, y=-k1, z=-1-k3, t=k3   ....A

These values are also satisfying equation ii.

Similarly, equating v & vii, we get

b+k2a-b=d+k4c-d

k2a+1-k2b-k4c+-1+k4d=0

Comparing this with equation i, we get

x=k2, y=1-k2, z=-k4, t=-1+k4   ....B

These values are also satisfying equation ii.

Combining A & B, we get

k1=y, k2=x, k3=t, k4=-z

Putting these values in viii, we get

-xya-b2=-ztc-d2

or 

xya-b2=ztc-d2

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.