Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A and C lie in 0,π2 and B lies in 0,2π. If tanA+3cosB+6sinC=1; 3tanA+cosB+4sinC=4; 5tanA+3cosB-8sinC=-2, then B-2 A-C=
MathematicsDeterminantsTS EAMCETTS EAMCET 2021 (04 Aug Shift 2)
Options:
  • A π6
  • B π3
  • C π4
  • D π2
Solution:
1049 Upvotes Verified Answer
The correct answer is: π3

Given tanA+3cosB+6sinC=1; 3tanA+cosB+4sinC=4 and 5tanA+3cosB-8sinC=-2.

Let tanA=x, cosB=y & sinC=z, then the given equations become

x+3y+6z=1   ...i

3x+y+4z=4   ...ii and

5x+3y-8z=-2   ...iii

Let P=13631453-8, X=xyz and Q=14-2.

Then, the system of equations can be written as PX=Q.

Hence, we have X=P-1Q.

Now P=13631453-8

P=1-8-12-3-24-20+69-5

P=-20+132+24=136.

The cofactors of the elements of the matrix P are

A11=-8-12=-20, A12=--24-20=44, A13=9-5=4,

A21=--24-18=42, A22=-8-30=-38, A23=-3-15=12,

A31=12-6=6, A32=-4-18=14, A33=1-9=-8.Thus, the adjoint matrix of P is

adjP=-2042644-3814412-8.

And P-1=adjPP,

P-1=1136-2042644-3814412-8.

The solution of the given system is

xyz=1136-2042644-3814412-814-2

xyz=1136-20×1+42×4+6×-244×1+-38×4+14×-24×1+12×4+-8×-2

xyz=113613613668

x=tanA=1, y=cosB=-1 and z=sinC=12.

Also, A and C lie in 0, π2 and B lies in 0, 2π.

Thus tanA=1, A=π4, cosB=-1, B=π and sinC=12, C=π6.

Now B-2 A-C=π-2×π4-π6=π3.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.