Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A, B, C, D are four points in a plane with position vectors $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}, \overline{\mathrm{d}}$ respectively such that $(\overline{\mathrm{a}}-\overline{\mathrm{d}}) \cdot(\overline{\mathrm{b}}-\overline{\mathrm{c}})=(\overline{\mathrm{b}}-\overline{\mathrm{d}}) \cdot(\overline{\mathrm{c}}-\overline{\mathrm{a}})=0$. The point $\mathrm{D}$, then is the of $\triangle \mathrm{ABC}$
MathematicsVector AlgebraMHT CETMHT CET 2023 (12 May Shift 2)
Options:
  • A centroid
  • B circumcentre
  • C incentre
  • D orthocentre
Solution:
1338 Upvotes Verified Answer
The correct answer is: orthocentre
$\begin{aligned} & (\overline{\mathrm{a}}-\overline{\mathrm{d}}) \cdot(\overline{\mathrm{b}}-\overline{\mathrm{c}})=(\overline{\mathrm{b}}-\overline{\mathrm{d}})(\overline{\mathrm{c}}-\overline{\mathrm{a}})=0 \\ & \overline{\mathrm{AD}} \cdot \overline{\mathrm{BC}}=\overline{\mathrm{BD}} \cdot \overline{\mathrm{CA}}=0 \\ & \Rightarrow \overline{\mathrm{AD}} \perp \overline{\mathrm{BC}} \text { and } \overline{\mathrm{BD}} \perp \overline{\mathrm{CA}}\end{aligned}$


$\Rightarrow D$ is the orthocentre of $\triangle A B C$.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.