Search any question & find its solution
Question:
Answered & Verified by Expert
A bar magnet of magnetic moment $\mathrm{M}$ and moment of inertia I (about centre, perpendicular to length) is cut into two equal pieces, perpendicular to length. Let $\mathrm{T}$ be the period of oscillations of the original magnet about an axis through the mid-point, perpendicular to length, in a magnetic field B. What would be the similar period T' for each piece?
Solution:
2428 Upvotes
Verified Answer
As we know that The time period of oscillation is,
$$
\mathrm{T}=2 \pi \sqrt{\frac{\mathrm{I}}{\mathrm{MB}}}
$$
where,
$\mathrm{M}=$ magnetic moment of the magnet
$\mathrm{B}=$ uniform magnetic field in which magnet is oscillating. if a magnet of magnetic moment $\mathrm{M}$ is cut into $n$ equal parts then magnetic moment $\mathrm{M}$ of all equal parts is $\mathrm{nM}^{\prime}=\mathrm{M}$ Magnetic dipole moment for two parts of magnet $\left(M^{\prime}=M / 2\right)$ So, magnetic moment of each parts of magnet is $\mathrm{M}^{\prime}=\mathrm{M} / 2$ Here, moment of inertia $\mathrm{I}=\frac{\mathrm{m} l^2}{12}$.
When magnet is cut into two equal pieces, perpendicular to length, then moment of inertia of each piece of magnet about an axis perpendicular to length passing through its centre is
$$
\mathrm{I}^{\prime}=\frac{m^{\prime} d^{\prime 2}}{12}
$$
$$
\begin{aligned}
&\mathrm{I}^{\prime}=\frac{\mathrm{m}}{2} \frac{(l / 2)^2}{12} \quad \quad\left(\because l^{\prime}=\frac{l}{2}\right) \\
&\mathrm{I}^{\prime}=\frac{\mathrm{m} l^2}{12} \times \frac{1}{8}=\frac{\mathrm{I}}{8} \quad\left[\because \mathrm{I}=\frac{m l^2}{12}\right]
\end{aligned}
$$
So, $\quad I^{\prime}=\frac{\mathrm{I}}{8}$
Magnetic dipole moment
$$
M^{\prime}=\mathrm{M} / 2
$$
Its time period of oscillation is
$$
\begin{gathered}
\mathrm{T}^{\prime}=2 \pi \sqrt{\frac{\mathrm{I}^{\prime}}{\mathrm{M}^{\prime} \mathrm{B}}}=2 \pi \sqrt{\frac{\mathrm{I} / 8}{\mathrm{M} / 2) \mathrm{B}}}=\frac{2 \pi}{2} \sqrt{\frac{\mathrm{I}}{\mathrm{MB}}} \\
\mathrm{T}^{\prime}=\frac{\mathrm{T}}{2}
\end{gathered}
$$
$$
\mathrm{T}=2 \pi \sqrt{\frac{\mathrm{I}}{\mathrm{MB}}}
$$
where,
$\mathrm{M}=$ magnetic moment of the magnet
$\mathrm{B}=$ uniform magnetic field in which magnet is oscillating. if a magnet of magnetic moment $\mathrm{M}$ is cut into $n$ equal parts then magnetic moment $\mathrm{M}$ of all equal parts is $\mathrm{nM}^{\prime}=\mathrm{M}$ Magnetic dipole moment for two parts of magnet $\left(M^{\prime}=M / 2\right)$ So, magnetic moment of each parts of magnet is $\mathrm{M}^{\prime}=\mathrm{M} / 2$ Here, moment of inertia $\mathrm{I}=\frac{\mathrm{m} l^2}{12}$.
When magnet is cut into two equal pieces, perpendicular to length, then moment of inertia of each piece of magnet about an axis perpendicular to length passing through its centre is
$$
\mathrm{I}^{\prime}=\frac{m^{\prime} d^{\prime 2}}{12}
$$
$$
\begin{aligned}
&\mathrm{I}^{\prime}=\frac{\mathrm{m}}{2} \frac{(l / 2)^2}{12} \quad \quad\left(\because l^{\prime}=\frac{l}{2}\right) \\
&\mathrm{I}^{\prime}=\frac{\mathrm{m} l^2}{12} \times \frac{1}{8}=\frac{\mathrm{I}}{8} \quad\left[\because \mathrm{I}=\frac{m l^2}{12}\right]
\end{aligned}
$$
So, $\quad I^{\prime}=\frac{\mathrm{I}}{8}$
Magnetic dipole moment
$$
M^{\prime}=\mathrm{M} / 2
$$
Its time period of oscillation is
$$
\begin{gathered}
\mathrm{T}^{\prime}=2 \pi \sqrt{\frac{\mathrm{I}^{\prime}}{\mathrm{M}^{\prime} \mathrm{B}}}=2 \pi \sqrt{\frac{\mathrm{I} / 8}{\mathrm{M} / 2) \mathrm{B}}}=\frac{2 \pi}{2} \sqrt{\frac{\mathrm{I}}{\mathrm{MB}}} \\
\mathrm{T}^{\prime}=\frac{\mathrm{T}}{2}
\end{gathered}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.