Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A bar of mass $m$ resting on a smooth horizontal plane starts moving due to a constant force $F$. In the process of its rectilinear motion the angle $\theta$ between the direction of this force and the horizontal varies as $\theta=k x$, where $k$ is a constant and $x$ is the distance traversed by the bar from its initial position. The velocity $(v)$ of the bar as a function of the angle $\theta$ is
PhysicsLaws of MotionAP EAMCETAP EAMCET 2022 (07 Jul Shift 1)
Options:
  • A $v=\sqrt{\frac{2 F \sin \theta}{m k}}$
  • B $v=\sqrt{\frac{2 F}{m k \sin \theta}}$
  • C $v=\frac{2 F \sin \theta}{m k}$
  • D $v=\frac{2 F}{m k \sin \theta}$
Solution:
2033 Upvotes Verified Answer
The correct answer is: $v=\sqrt{\frac{2 F \sin \theta}{m k}}$
Component of force responsible for horizontal motion is $F \cos \theta$.


So, acceleration of bar, $a=\frac{F \cos \theta}{m}$
As acceleration, $a=\frac{d v}{d t}$, we have
$\Rightarrow \quad \frac{d v}{d t}=\frac{F \cos \theta}{m}$
we can also express this as,
$\begin{array}{ll}\Rightarrow & \frac{d v}{d x} \cdot \frac{d x}{d t}=\frac{F \cos \theta}{m} \\ \Rightarrow & v d v=\frac{F \cos \theta}{m} d x\end{array}$
Integrating both sides and putting $\theta=k x$, we get
$\int v d v=\int \frac{F \cos k x}{m} d x$
$\begin{array}{ll}\Rightarrow & \frac{v^2}{2}=\frac{F}{m} \int \cos k x \cdot d x \\ \Rightarrow & \frac{v^2}{2}=\frac{F}{m} \cdot\left(\frac{\sin k x}{k}\right) \\ \Rightarrow & v^2=\frac{2 F \sin k x}{m k} \\ \Rightarrow & v=\sqrt{\frac{2 F \sin \theta}{m k}}\end{array}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.