Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$A B C D E F$ is a regular hexagon whose centre is O. Then, $\mathbf{A B}+\mathbf{A C}+\mathbf{A D}+\mathbf{A E}+\mathbf{A F}$ is equal to
MathematicsProperties of TrianglesTS EAMCETTS EAMCET 2016
Options:
  • A $2 \mathrm{AO}$
  • B 3 AO
  • C $5 \mathrm{AO}$
  • D $6 \mathrm{AO}$
Solution:
2486 Upvotes Verified Answer
The correct answer is: $6 \mathrm{AO}$


$$
\begin{aligned}
& \because \quad \mathrm{AB}=\mathrm{ED}, \mathrm{AF}=\mathrm{CD} \\
& \therefore \quad \mathrm{AB}+\mathrm{AC}+\mathrm{AD}+\mathrm{AE}+\mathrm{AF} \\
& =A E+E D+A C+C D+A D \\
& =A D+A D+A D \\
& =3 \mathrm{AD} \\
&
\end{aligned}
$$
$\because O$ is the centre of regular hexagon.
$$
\begin{aligned}
& \therefore \quad \mathrm{AD}=2 \mathrm{AO} \\
& \Rightarrow \quad 3 \mathrm{AD}=3 \times 2 \mathrm{AO}=6 \mathrm{AO} \\
&
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.