Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$A B C D$ is a parallelogram and $P$ is a point on the segment $\mathbf{A D}$ dividing it internally in the ratio $3: 1$. If the line $\mathbf{B P}$ meets the diagonal $A C$ in $Q$, then $A Q: Q C$ equals
MathematicsThree Dimensional GeometryTS EAMCETTS EAMCET 2015
Options:
  • A $3: 4$
  • B $4: 3$
  • C $3: 2$
  • D $2: 3$
Solution:
2818 Upvotes Verified Answer
The correct answer is: $3: 4$
Since, $P$ divides $A D$ in the ratio $3: 1$, so $P$ will be $\frac{3 d}{4}$


Let $Q$ divides $B P$ in $1: \lambda$ and $A C$ in $1: \mu$.
$$
\begin{aligned}
& \therefore \quad \frac{\mathbf{b}+\mathbf{d}}{1+\mu}=\frac{\frac{3 \mathbf{d}}{4}+\lambda \mathbf{b}}{1+\lambda} \\
& \Rightarrow \mathbf{b}(1+\lambda)+(1+\lambda) \mathbf{d}=\frac{3}{4}(1+\mu) \mathbf{d}+\lambda(1+\mu) \mathbf{d}
\end{aligned}
$$
On equating the vectors $\mathbf{b}$ and $\mathbf{d}$, we get
$$
\begin{array}{rlrl}
& & 1+\lambda=\frac{3}{4}(1+\mu) & \text { and } 1+\lambda=\lambda(1+\mu) \\
\Rightarrow & \lambda & =\frac{3}{4} \text { and } \mu=\frac{4}{3} \\
\therefore & A Q: Q C & =1: \mu \\
& = & 1: \frac{4}{3}=3: 4
\end{array}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.