Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$A B C D$ is a square with side 16 units and $A$ is the origin. If the equation of the circle circumscribing the square $A B C D$ is $x^2+y^2=4 k(x+y)$, then $k=$
MathematicsStraight LinesAP EAMCETAP EAMCET 2018 (23 Apr Shift 1)
Options:
  • A 2
  • B 4
  • C 16
  • D 64
Solution:
2664 Upvotes Verified Answer
The correct answer is: 4
$A B C D$ is a square with side 16 units let $a=16$ units
Centre of the circle $O\left(\frac{a}{2}, \frac{a}{2}\right)$


$$
A C=\sqrt{(a-0)^2+(a-0)^2}=\sqrt{2} a
$$
So, radius of circle $=\frac{A C}{2}=\frac{\sqrt{2} a}{2}=\frac{a}{\sqrt{2}}$
$\therefore$ Equation of circle
$$
\begin{array}{rlrl}
& \left(x-\frac{a}{2}\right)^2+\left(y-\frac{a}{2}\right)^2 & =\left(\frac{a}{\sqrt{2}}\right)^2 \\
\Rightarrow x^2+\frac{a^2}{4}-a x+y^2+\frac{a^2}{4}-a y & =\frac{a^2}{2} \\
\Rightarrow & x^2+y^2-a x-a y =0 \\
\Rightarrow & x^2+y^2 =a(x+y) \\
\text { here } & a =16 \\
\Rightarrow & x^2+y^2 =16(x+y) \\
\Rightarrow & x^2+y^2 =4.4(x+y) \\
\text { by comparing } & k =4
\end{array}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.