Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A beam of light travelling along $X$-axis is described by the electric field $E_Y=600 \frac{\mathrm{V}}{\mathrm{m}}$. $\sin \omega\left(t-\frac{x}{c}\right)$, the maximum magnetic force on a charge $q=2 e$, moving along $Y$-axis with the speed of $3 \times 10^8 \mathrm{~m} / \mathrm{s}$ is
PhysicsElectromagnetic WavesJIPMERJIPMER 2016
Options:
  • A $19.2 \times 10^{-17} \mathrm{~N}$
  • B $1.92 \times 10^{-17} \mathrm{~N}$
  • C 0.192 N
  • D None of these
Solution:
2233 Upvotes Verified Answer
The correct answer is: $1.92 \times 10^{-17} \mathrm{~N}$
Given, electric field, $E_y=600 \frac{\mathrm{V}}{\mathrm{m}} \cdot \sin \omega\left(t-\frac{x}{\mathrm{c}}\right)$...(i)
We know that,
$E=E_0 \sin \omega\left(t-\frac{x}{c}\right)$.....(ii)
On comparing Eqs. (i) and (ii), we get $E_0=600 \mathrm{~V} / \mathrm{m}$ and $C=3 \times 10^8 \mathrm{~m} / \mathrm{s}$
Maximum magnetic field,
$\begin{aligned} & B_0=\frac{E_0}{C} \\ & B_0=\frac{600}{3 \times 10^8}=2 \times 10^{-6} \mathrm{~T}\end{aligned}$
$\begin{aligned} \therefore \quad F_m & =q v B_0=2 \mathrm{ev} B_0 \\ & =2 \times 1.6 \times 10^{-19} \times 3 \times 10^8 \times 2 \times 10^{-6} \\ & =19.2 \times 10^{-17} \mathrm{~N}\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.