Search any question & find its solution
Question:
Answered & Verified by Expert
A binomial random variable $\mathrm{X}$ satisfies 9.p $(\mathrm{X}=4)=\mathrm{p}(\mathrm{X}=2)$ when $\mathrm{n}=6$. Then $\mathrm{p}$ is equal to
Options:
Solution:
1778 Upvotes
Verified Answer
The correct answer is:
$\frac{1}{4}$
$\begin{aligned} & \text { 9. } p(X=4)=p(X=2) \text { and } n=6 \\ & \Rightarrow 9 \times{ }^6 C_4 p^4 q^2={ }^6 C_2 p^2 q^4 \\ & \Rightarrow 9 p^2=q^2 \\ & \Rightarrow 3 p=q \\ & \Rightarrow 3 p=1-p \\ & \Rightarrow p=\frac{1}{4}\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.