Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A binomial random variable $\mathrm{X}$ satisfies 9.p $(\mathrm{X}=4)=\mathrm{p}(\mathrm{X}=2)$ when $\mathrm{n}=6$. Then $\mathrm{p}$ is equal to
MathematicsProbabilityMHT CETMHT CET 2023 (11 May Shift 1)
Options:
  • A $\frac{1}{4}$
  • B $\frac{1}{2}$
  • C $\frac{1}{8}$
  • D $\frac{1}{5}$
Solution:
1778 Upvotes Verified Answer
The correct answer is: $\frac{1}{4}$
$\begin{aligned} & \text { 9. } p(X=4)=p(X=2) \text { and } n=6 \\ & \Rightarrow 9 \times{ }^6 C_4 p^4 q^2={ }^6 C_2 p^2 q^4 \\ & \Rightarrow 9 p^2=q^2 \\ & \Rightarrow 3 p=q \\ & \Rightarrow 3 p=1-p \\ & \Rightarrow p=\frac{1}{4}\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.