Search any question & find its solution
Question:
Answered & Verified by Expert
A black body radiates maximum energy at wavelength $^{\prime} \lambda^{\prime}$ and its emissive power is ${ }^{\prime} \mathrm{E}^{\prime}$. Now, due to change in temperature of that body, it radiates maximum energy at wavelength $\frac{2 \lambda}{3}$. At that temperature, emissive power is
Options:
Solution:
1413 Upvotes
Verified Answer
The correct answer is:
$\frac{81 \mathrm{E}}{16}$
$\lambda_{\max } \mathrm{T}_{1}=\lambda_{2 \max } \mathrm{T}_{2} \quad \quad \mathrm{E}=\sigma \mathrm{A} \mathrm{T}_{1}^{4}$
$\mathrm{T}_{2}=\frac{\lambda_{1} \mathrm{~T}_{1}}{\lambda_{2}}$
$\frac{E_{2}}{E_{1}}=\frac{T_{2}^{4}}{T_{1}^{4}}$
$\therefore \mathrm{E}_{2}=\mathrm{E}_{1} \times \frac{\lambda_{1}^{4} \mathrm{~T}_{1}^{4}}{\lambda_{2}^{4}} \times \frac{1}{\mathrm{~T}_{1}^{4}}=\mathrm{E} \times \frac{\lambda_{1}^{4}}{\frac{16}{81} \lambda_{1}^{4}}=\frac{81}{16} \mathrm{E}$
$\mathrm{T}_{2}=\frac{\lambda_{1} \mathrm{~T}_{1}}{\lambda_{2}}$
$\frac{E_{2}}{E_{1}}=\frac{T_{2}^{4}}{T_{1}^{4}}$
$\therefore \mathrm{E}_{2}=\mathrm{E}_{1} \times \frac{\lambda_{1}^{4} \mathrm{~T}_{1}^{4}}{\lambda_{2}^{4}} \times \frac{1}{\mathrm{~T}_{1}^{4}}=\mathrm{E} \times \frac{\lambda_{1}^{4}}{\frac{16}{81} \lambda_{1}^{4}}=\frac{81}{16} \mathrm{E}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.