Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A block of mass 'M' is moving on rough horizontal surface with momentum 'P'. The coefficient of friction between the block and surface is ' $\mu$ '. The distance covered by block before it stops is $[\mathrm{g}=$ acceleration due to gravity $]$
PhysicsLaws of MotionMHT CETMHT CET 2020 (16 Oct Shift 2)
Options:
  • A $\frac{2 \mu \mathrm{Mg}}{\mathrm{P}}$
  • B $\frac{\mathrm{P}}{2 \mu \mathrm{Mg}}$
  • C $\frac{\mathrm{P}^{2}}{2 \mu \mathrm{M}^{2} \mathrm{~g}}$
  • D $\frac{2 \mu \mathrm{M}^{2} \mathrm{~g}}{\mathrm{P}^{2}}$
Solution:
2553 Upvotes Verified Answer
The correct answer is: $\frac{\mathrm{P}^{2}}{2 \mu \mathrm{M}^{2} \mathrm{~g}}$
Using kinematic relation,
$v^{2}=u^{2}-2 a s$
The momentum pis given by
$\begin{array}{l}
p=M u \\
u=\frac{P}{M}
\end{array}$
and acceleration is given as
$a=\mu g$
Substituting values in Eq. (i), we get
$\begin{array}{l}
0=\mathrm{u} 2-2 \mathrm{as}(\because f \in \text { alvelocity }, v=0) \\
0=\left(\frac{\mathrm{p}}{\mathrm{M}}\right)^{2}-2 \mu \mathrm{gs} \\
\left(\frac{\mathrm{p}}{\mathrm{M}}\right)^{2}=2 \mu \mathrm{gs} \\
\Rightarrow \mathrm{s}=\frac{\mathrm{p}^{2}}{2 \mathrm{M}^{2} \mu \mathrm{g}}
\end{array}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.