Search any question & find its solution
Question:
Answered & Verified by Expert
A block of mass m rests on a horizontal table with a co-efficient of static friction $\mu .$ What minimum force must be applied on the block to drag it on the table?
Options:
Solution:
1130 Upvotes
Verified Answer
The correct answer is:
$\frac{\mu}{\sqrt{1+\mu^{2}}} \mathrm{mg}$
Hint:

$F \sin \theta+N=m g \quad N=m g-F \sin \theta$
$F \cos \theta=\mu(m g-F \sin \theta) \quad F=\frac{\mu m g}{\cos \theta+\mu \sin \theta}$,
for $F_{\min }, \frac{d}{d \theta}[\cos \theta+\mu \sin \theta]=0$
$\therefore \tan \theta=\mu$
$\therefore F_{\min }=\frac{\mu \mathrm{mg}}{\sqrt{1+\mu^{2}}}$

$F \sin \theta+N=m g \quad N=m g-F \sin \theta$
$F \cos \theta=\mu(m g-F \sin \theta) \quad F=\frac{\mu m g}{\cos \theta+\mu \sin \theta}$,
for $F_{\min }, \frac{d}{d \theta}[\cos \theta+\mu \sin \theta]=0$
$\therefore \tan \theta=\mu$
$\therefore F_{\min }=\frac{\mu \mathrm{mg}}{\sqrt{1+\mu^{2}}}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.