Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A body is moving up an inclined plane of angle $\theta$ with an initial kinetic energy $E$. The coefficient of friction between the plane and the body is $u$. The work done against friction before the body comes to rest is
PhysicsWork Power EnergyJEE Main
Options:
  • A $\frac{\mu \cos \theta}{E \cos \theta+\sin \theta}$
  • B $E$
  • C $\frac{\mu E \cos \theta}{\mu \cos \theta-\sin \theta}$
  • D $\frac{\mu E \cos \theta}{\mu \cos \theta+\sin \theta}$
    Increase in KE, $\begin{aligned} \frac{p_2^2-p_1^2}{2 m} & =\frac{(10)^2-(8)^2}{2 \times 4} \\ & =\frac{100-64}{8}=\frac{36}{8} \\ & =4.5 \mathrm{~J}\end{aligned}$
Solution:
2320 Upvotes Verified Answer
The correct answer is: $E$
Acceleration of a body up a rough inclined plane


$a=g(\mu \cos \theta+\sin \theta)$

From equation of motion
$\begin{aligned}
v^2 & =u^2-2 a s \\
0 & =u^2-2 a s \\
u^2 & =2 a s
\end{aligned}$
Initial $\mathrm{KE}, E=\frac{1}{2} m u^2$
$\begin{aligned}
E & =\frac{1}{2} m(2 a s) \\
s & =\frac{E}{m a}
\end{aligned}$
$\begin{aligned} & \text { Work done } W=F \cdot s \\ & =(m g \sin \theta+\mu R) \cdot \frac{E}{m a} \\ & =(m g \sin \theta+\mu m g \cos \theta) \cdot \frac{E}{m(\mu \cos \theta+\sin \theta)} \\ & =g(\sin \theta+\mu \cos \theta) \cdot \frac{E}{g(\mu \cos \theta+\sin \theta)}=E\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.