Search any question & find its solution
Question:
Answered & Verified by Expert
A body is projected vertically upwards from earth's surface. If its K.E. of projection is
equal to half of its minimum value required to escape from the gravitational
influence, then the height upto which it rises is $(\mathrm{R}=$ radius of the earth $)$
Options:
equal to half of its minimum value required to escape from the gravitational
influence, then the height upto which it rises is $(\mathrm{R}=$ radius of the earth $)$
Solution:
2045 Upvotes
Verified Answer
The correct answer is:
$\mathrm{R}$
Minimum value of kinetic energy required to escape from the gravitational influence of the earth is given by
$\mathrm{k}_{\mathrm{e}}=\frac{\mathrm{GMm}}{\mathrm{R}}$
$\therefore$ The kinetic energy of projection is
$\mathrm{K}=\frac{\mathrm{GMm}}{2 \mathrm{R}}$
At the highest point the kinetic energy become zero.
Loss of kinetic energy $=$ Gain in potential energy
$\begin{aligned}
& \frac{\mathrm{GMm}}{2 \mathrm{R}}=\frac{\mathrm{GMm}}{\mathrm{R}}-\frac{\mathrm{GMm}}{\mathrm{R}+\mathrm{h}} \\
\therefore & \frac{1}{2 \mathrm{R}}=\frac{1}{\mathrm{R}}-\frac{1}{\mathrm{R}+\mathrm{h}} \\
\therefore & \frac{1}{\mathrm{R}+\mathrm{h}}=\frac{1}{\mathrm{R}}-\frac{1}{2 \mathrm{R}}=\frac{1}{2 \mathrm{R}} \\
\therefore & \mathrm{R}+\mathrm{h}=2 \mathrm{R} \\
\therefore & \mathrm{h}=2 \mathrm{R}-\mathrm{R}=\mathrm{R}
\end{aligned}$
$\mathrm{k}_{\mathrm{e}}=\frac{\mathrm{GMm}}{\mathrm{R}}$
$\therefore$ The kinetic energy of projection is
$\mathrm{K}=\frac{\mathrm{GMm}}{2 \mathrm{R}}$
At the highest point the kinetic energy become zero.
Loss of kinetic energy $=$ Gain in potential energy
$\begin{aligned}
& \frac{\mathrm{GMm}}{2 \mathrm{R}}=\frac{\mathrm{GMm}}{\mathrm{R}}-\frac{\mathrm{GMm}}{\mathrm{R}+\mathrm{h}} \\
\therefore & \frac{1}{2 \mathrm{R}}=\frac{1}{\mathrm{R}}-\frac{1}{\mathrm{R}+\mathrm{h}} \\
\therefore & \frac{1}{\mathrm{R}+\mathrm{h}}=\frac{1}{\mathrm{R}}-\frac{1}{2 \mathrm{R}}=\frac{1}{2 \mathrm{R}} \\
\therefore & \mathrm{R}+\mathrm{h}=2 \mathrm{R} \\
\therefore & \mathrm{h}=2 \mathrm{R}-\mathrm{R}=\mathrm{R}
\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.