Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
A body is projected vertically, upwards from earth's surface with velocity $2 V_e$ where $V_e$ is the escape velocity from earth's surface. The velocity when body escapes the gravitational pull is
PhysicsGravitationMHT CETMHT CET 2022 (10 Aug Shift 1)
Options:
  • A $\sqrt{3} V_e$
  • B $V_e$
  • C $\sqrt{2} V_e$
  • D $\frac{V_e}{\sqrt{3}}$
Solution:
1122 Upvotes Verified Answer
The correct answer is: $\sqrt{3} V_e$
To escape the gravitational pull $F=\frac{G M m}{r^2}$, the body needs to be at
$\begin{aligned} & r \rightarrow \infty \\ & \Rightarrow-\left(\frac{G M m}{R}\right)+\frac{1}{2} m\left(V_e\right)^2=0 \\ & \Rightarrow V_e=\sqrt{\frac{2 G M}{R}}\end{aligned}$
Therefore, if the particle is projected with $2 V_e$ from the surface of earth, then at $r \rightarrow \propto$ the velocity of the projectile is $V$. Considering energy conservation:
$\begin{aligned} & \Rightarrow-\left(\frac{G M m}{R}\right)+\frac{1}{2} m\left(2 V_e\right)^2=0+\frac{1}{2} m V^2 \\ & \Rightarrow-\frac{G M}{\mathrm{R}}+\frac{1}{2}\left(2 V_e\right)^2=\frac{1}{2} V^2 \\ & \Rightarrow-\frac{G M}{\mathrm{R}}+\frac{4 G M}{R}=\frac{1}{2} V^2 \\ & \therefore V=\sqrt{\frac{6 G M}{R}}=\sqrt{3}\left(\sqrt{\frac{2 G M}{R}}\right)=\sqrt{3} V_e\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.