Search any question & find its solution
Question:
Answered & Verified by Expert
A body of mass $m_1=4 \mathrm{~kg}$ moves at $5 \mathrm{i~} \mathrm{m} / \mathrm{s}$ and another body of mass $m_2=2 \mathrm{~kg}$ moves at $10 \mathrm{i~} \mathrm{m} / \mathrm{s}$. The kinetic energy of centre of mass is
Options:
Solution:
2908 Upvotes
Verified Answer
The correct answer is:
$\frac{400}{3} \mathrm{~J}$
$v_{\mathrm{CM}}=\frac{m_1 \frac{d r_1}{d t}+m_2 \frac{d r_2}{d t}}{m_1+m_2}=\frac{4 \times 5 \mathbf{i}+2 \times 10 \mathbf{i}}{4+2}$
$v_{\mathrm{CM}}=\frac{40 \mathbf{i}}{6}=\frac{20}{3} \mathbf{i}$
The kinetic energy
$K=\frac{1}{2} m v^2$
$=\frac{1}{2} \times(4+2) \times \frac{20 \times 20}{3 \times 3}$
$=\frac{1}{2} \times 6 \times \frac{20 \times 20}{3 \times 3}$
$K=\frac{400}{3} \mathrm{~J}$
$v_{\mathrm{CM}}=\frac{40 \mathbf{i}}{6}=\frac{20}{3} \mathbf{i}$
The kinetic energy
$K=\frac{1}{2} m v^2$
$=\frac{1}{2} \times(4+2) \times \frac{20 \times 20}{3 \times 3}$
$=\frac{1}{2} \times 6 \times \frac{20 \times 20}{3 \times 3}$
$K=\frac{400}{3} \mathrm{~J}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.