Search any question & find its solution
Question:
Answered & Verified by Expert
A box contains coupons labeled $1,2,3$....n. A coupon is picked at random and the number $\mathrm{x}$ is noted. The coupon is put back into the box and a new coupon is picked at random. The new number is $y$. Then the probability that one of the numbers $\mathrm{x}$, y divides the other is (in the options below [r] denotes the largest integer less than or equal to $\mathrm{r}$ )
Options:
Solution:
1188 Upvotes
Verified Answer
The correct answer is:
$-\frac{1}{n}+\frac{2}{n^{2}} \sum_{k=1}^{n}\left[\frac{n}{k}\right]$
Let $x=1$
favourable out comes $(1,1),(1,2) \ldots \ldots(1, n)$ no. of favourable out comes when $x=1$
$$
=\left[\frac{\mathrm{n}}{1}\right]
$$
$\therefore$ no. of favourable out comes when $x=1$ or $y=1$
$$
=2\left[\frac{\mathrm{n}}{1}\right]-1
$$
no. of favourable out comes when $x=2$ or $y=2$ but $x \neq 1, y \neq 1$
$$
2\left[\frac{\mathrm{n}}{2}\right]-1
$$
Similarly
no. of favourable out comes when $x=k$ or $y=k$ but $x, y \notin\{1,2, \ldots . . k-1\}$
$$
2\left[\frac{\mathrm{n}}{\mathrm{k}}\right]-1
$$
So probability $=\frac{\sum_{k=1}^{n}\left[\frac{n}{k}\right]-(1+1 \ldots . . n \text { times })}{n^{2}}$
$$
=\frac{2}{\mathrm{n}^{2}} \sum_{\mathrm{k}=1}^{n}\left[\frac{\mathrm{n}}{\mathrm{k}}\right]-\frac{1}{\mathrm{n}}
$$
favourable out comes $(1,1),(1,2) \ldots \ldots(1, n)$ no. of favourable out comes when $x=1$
$$
=\left[\frac{\mathrm{n}}{1}\right]
$$
$\therefore$ no. of favourable out comes when $x=1$ or $y=1$
$$
=2\left[\frac{\mathrm{n}}{1}\right]-1
$$
no. of favourable out comes when $x=2$ or $y=2$ but $x \neq 1, y \neq 1$
$$
2\left[\frac{\mathrm{n}}{2}\right]-1
$$
Similarly
no. of favourable out comes when $x=k$ or $y=k$ but $x, y \notin\{1,2, \ldots . . k-1\}$
$$
2\left[\frac{\mathrm{n}}{\mathrm{k}}\right]-1
$$
So probability $=\frac{\sum_{k=1}^{n}\left[\frac{n}{k}\right]-(1+1 \ldots . . n \text { times })}{n^{2}}$
$$
=\frac{2}{\mathrm{n}^{2}} \sum_{\mathrm{k}=1}^{n}\left[\frac{\mathrm{n}}{\mathrm{k}}\right]-\frac{1}{\mathrm{n}}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.